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Abstract

By using ghost points on either side of the interfaces, a global second-order accurate upwinding boundary condition
capturing method for time-domain Maxwell’s equations in media with material interfaces is proposed. The equations
are discretized on a uniform Cartesian grid and the interfaces are allowed to intersect the grid in an arbitrary fashion.
The method is then obtained by combining central finite difference schemes with applicable nodes being replaced by the
ghost points and upwinding technique with jump conditions across the interfaces being captured in a manner that the
upwind property is always satisfied. The resulting discretization has the desirable property that the allowed time step size
is independent of the locations and the shapes of the interfaces. Numerical examples are then given to demonstrate the
second-order accuracy as well as the stability of the method, where it is used to study wave equations with various types
of material interfaces, including electromagnetic scattering of a plane incident wave by a dielectric circular cylinder.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The finite-difference time-domain (FDTD) methods, which were first introduced by Yee in 1966 [1] and
later developed by Taflove and others [2], have been used extensively as useful modeling tools in computa-
tional electromagnetics and have been applied to a broad range of application problems. In particular, the
most widely-used staggered Yee scheme [1] has been demonstrated to be robust, efficient, and simple to imple-
ment. However, when used to model objects with curved boundaries or to solve Maxwell’s equations in media
with irregular material interfaces, locally conforming meshes to the curved boundaries or the irregular mate-
rial interfaces are required. Otherwise, the second-order Yee scheme may reduce to at best first-order accuracy
and allow the possibility of localized non-convergent behavior [3,4]. Furthermore, when used to solve
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Maxwell’s equations with discontinuous coefficients, the Yee scheme might not be able to capture the possible
discontinuity of the solution across the interfaces.

A number of second-order finite difference methods have been proposed in the past for modeling time-
domain Maxwell’s equations in inhomogeneous media with irregular material interfaces. The usual and
straightforward approach is to introduce appropriate local modifications into the Yee scheme but still keep
the staggered grid [4–6]. It should also be pointed out that there are some recent studies of high-order embed-
ded boundary FDTD schemes for time-domain Maxwell’s equations with material interfaces [7], including the
non-dissipative staggered fourth-order explicit method and the staggered fourth-order compact implicit
method by Yefet et al. [8,9], and the staggered fourth-order explicit method and the orthogonal curvilinear
staggered-grid fourth-order explicit method by Xie et al. [10,11]. Subtle interface techniques with one-sided
difference approximations and extrapolations are employed in these methods. Also, high-order FDTD meth-
ods via hierarchical implicit derivative matching are presented in [12]. The significant accomplishment of these
high-order schemes is that the physical jump conditions at the material interfaces are correctly enforced up to
high-order, so that high-order convergence is uniformly assured over the entire domain. The implementation
of these high-order FDTD methods for Maxwell’s equations in inhomogeneous media with complex material
interfaces, however, has not been addressed with satisfactory results and therefore remains a great challenge.

Previous numerical methods making use of Cartesian grids for the approximation of hyperbolic equations
could also be found in [13–16], among which is the fully second-order upwinding embedded boundary method
(UEBM) [13]. This method makes use of a simple Cartesian grid and basically a central finite difference scheme
for grid points away from the interfaces. To enforce the physically correct jump conditions across the inter-
faces, however, appropriate local modifications of the finite difference scheme close to the interfaces are devel-
oped with the use of one-sided difference approximations and extrapolations. In addition, solutions at both
sides of the interfaces are also calculated and reconciled in order to observe both the upwind property and
the interface jump condition.

The ghost fluid method (GFM) was originally designed to properly treat contact discontinuities in the invis-
cid Euler equations in [17], and since then it has been generalized to handle irregular boundaries in a variety of
problems [18–30]. For examples, with the use of the so-called ghost cells (based on the GFM), Gibou et al.
proposed in [22] a second-order accurate finite difference method for Poisson equations, and most recently
in [23] a fourth-order accurate finite difference method for the Laplace and heat equations, on irregular
domains with Dirichlet boundary conditions being imposed on the irregular interfaces. Similarly, by using
ghost points on either side of the interfaces, Kreiss et al. proposed several second-order embedded boundary
methods for second-order wave equations with Dirichlet boundary condition [27,28], Neumann boundary
condition [29], and jump conditions [30] on the irregular interfaces, respectively.

In this paper, we shall combine the GFM with the UEBM to develop a new second-order accurate finite
difference method for time-domain Maxwell’s equations in media with material interfaces. First, the equations
are discretized on a uniform Cartesian grid and the interfaces are allowed to intersect the grid in an arbitrary
fashion. Then, like in the GFM [23], ghost points are introduced in the neighborhood of the interfaces, and
used in the discretization of the spatial derivatives in the finite difference stencil. To capture the boundary con-
ditions across the interfaces, like in the UEBM [13], the solutions at both sides of the interfaces are also cal-
culated by one-sided extrapolations of the solution in the corresponding side of the interfaces. Since in
hyperbolic systems, the upwind characteristic information should be unaffected by the material interfaces,
the two interface solutions are so constructed that both the interface jump condition and the upwind property
are observed. One- and two-dimensional numerical examples are presented at last to verify the global second-
order accuracy as well as the stability of the method.
2. One-dimensional scalar wave equations

To demonstrate the basic idea of the upwinding boundary condition capturing method, we begin by con-
sidering the one-dimensional scalar wave equation
ou
ot
þ c

ou
ox
¼ 0; x 2 X ¼ ½a; b�; ð1Þ
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where the wave speed c is assumed to be positive and discontinuous at xd 2 ða; bÞ; i.e.,
c ¼
c� > 0; x < xd ;

cþ > 0; x > xd :

�

Consequently, the solution uðx; tÞ is in general discontinuous at the interface xd, and is assumed to satisfy the
given interface jump condition
rþuðxþd ; tÞ � r�uðx�d ; tÞ ¼ gðtÞ; ð2Þ

where uðx�d ; tÞ and uðxþd ; tÞ represent the two one-sided limits of the solution as x approaches the interface xd,
henceforth called the interface solutions.

To solve Eq. (1) by a finite difference method, the spatial computational domain ½a; b� is discretized into
cells of size Dx to form a uniform Cartesian grid fxi ¼ aþ iDx; 0 6 i 6 N ; Dx ¼ ðb� aÞ=Ng. Let un

i denote
the numerical approximation of the solution uðxi; tnÞ, and also let u�,n and u+,n denote the numerical approx-
imation of the interface solutions uðx�d ; tnÞ and uðxþd ; tnÞ, respectively.

We shall construct a uniformly second-order finite difference method to solve Eq. (1) based on the Lax–
Wendroff approach
unþ1¼: un þ Dtun
t þ
ðDtÞ2

2
un

tt ¼ un � cDtun
x þ

c2ðDtÞ2

2
un

xx: ð3Þ
For each unknown unþ1
i , the above Lax–Wendroff scheme is employed with the spatial derivatives being

approximated by appropriate second-order central finite differences
un
x jx¼xi

�
un

iþ1 � un
i�1

2Dx
; ð4Þ

un
xxjx¼xi

�
un

iþ1 � 2un
i þ un

i�1

ðDxÞ2
: ð5Þ
However, the discretization (4) or (5) is valid only if all the nodes in the stencil belong to the same side of the
interface, and needs to be modified otherwise. For example, suppose that the discontinuity lies between the
nodes xj and xjþ1, and xd ¼ xj þ hDx (see Fig. 1), where 0 6 h < 1 is called the cell fraction, and we seek to
approximate ux and uxx at the grid point xj in order to solve for unþ1

j . Since the solution might not be smooth
or even continuous across the interface, we need a valid value for un

jþ1 that can emulate the behavior of the
solution defined to the left of the interface. As discussed in [23], this can be achieved by introducing a ghost
cell around the discontinuity, or in another word, a ghost value un;G

jþ1 at xjþ1 defined by extrapolation of the
solution to the left side of the interface. Then, the spatial discretization (4) or (5) for the irregular grid point
xj can be rewritten as
un
x jx¼xj

�
un;G

jþ1 � un
j�1

2Dx
; ð6Þ

un
xxjx¼xj

�
un;G

jþ1 � 2un
j þ un

j�1

ðDxÞ2
: ð7Þ
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Fig. 1. Illustration of the definition of ghost values.
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More precisely, we construct a linear extrapolant LðxÞ of uðxÞ to the left of the interface, such that LðxjÞ ¼ uj

and LðxdÞ ¼ u�. Then the ghost value at the node xjþ1 is defined as uG
jþ1 ¼ Lðxjþ1Þ, and we have
uG
jþ1 ¼ Lðxjþ1Þ ¼

h� 1

h
uj þ

1

h
u�: ð8Þ
Considering that the cell fraction h could be very small or even zero for an arbitrary grid, in practice when it is
too small, we instead construct the linear extrapolant LðxÞ such that Lðxj�1Þ ¼ uj�1 and LðxdÞ ¼ u�. Note that
in this case, we still use u� rather than uj in the extrapolation to take into account the boundary condition, and
it is for this reason that, in addition to the solution at all grid points, at each time step we need to keep track of
the solution at both sides of the interface as well. Accordingly, the ghost value at the node xjþ1 is defined as
uG

jþ1 ¼ Lðxjþ1Þ, and we have
uG
jþ1 ¼ Lðxjþ1Þ ¼

h� 1

1þ h
uj�1 þ

2

1þ h
u�: ð9Þ
Similarly, to approximate ux and uxx at xjþ1 when we solve for unþ1
jþ1 , we would require a ghost value at the node

xj, denoted by un;G
j , which can emulate the behavior of the solution defined to the right of the interface as if no

interface is present. Accordingly, the numerical discretization (4) or (5) of the spatial derivatives at xjþ1 in
terms of the ghost value would be
un
x jx¼xjþ1

�
un

jþ2 � un;G
j

2Dx
; ð10Þ

un
xxjx¼xjþ1

�
un

jþ2 � 2un
jþ1 þ un;G

j

ðDxÞ2
: ð11Þ
Here, the ghost value uG
j could be obtained by a linear extrapolant RðxÞ of uðxÞ to the right of the interface,

such that Rðxjþ1Þ ¼ ujþ1 and RðxdÞ ¼ uþ. In this case, we would have
uG
j ¼ RðxjÞ ¼

�h
1� h

ujþ1 þ
1

1� h
uþ: ð12Þ
But again considering that the cell fraction h could be very close to one in practice, we use the linear extrap-
olation with the conditions that Rðxjþ2Þ ¼ ujþ2 and RðxdÞ ¼ uþ, giving the following ghost value at the node xj

instead
uG
j ¼ RðxjÞ ¼

�h
2� h

ujþ2 þ
2

2� h
uþ: ð13Þ
As mentioned earlier, to capture the boundary condition across the material interface, we need to keep track
of the solution at both sides of the interface as well. Please note that they are also required in calculating the
ghost values for points in the neighborhood of the interface. Since the solution of Eq. (1) represents a wave
propagating from the left to the right, we calculate u� by a quadratic extrapolant QðxÞ such that
Qðxj�2Þ ¼ uj�2;Qðxj�1Þ ¼ uj�1, and QðxjÞ ¼ uj, i.e.,
u� ¼ QðxdÞ ¼
hð1þ hÞ

2
uj�2 � hð2þ hÞuj�1 þ

ð1þ hÞð2þ hÞ
2

uj; ð14Þ
and then calculate u+ simply by using the jump condition (2), and we have
uþ ¼ 1

rþ
ðg þ r�u�Þ: ð15Þ
3. One-dimensional wave systems

The discretization scheme discussed in Section 2 for scalar wave equations can be extended naturally to the
system of one-dimensional linear wave equations
ou

ot
þ A

ou

ox
¼ 0; x 2 X ¼ ½a; b�; ð16Þ
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where uðx; tÞ ¼ ðu1ðx; tÞ; . . . ; unðx; tÞÞT. The coefficient matrix A has different formulas across the discontinuity
xd 2 ða; bÞ representing a material interface
A ¼
A�; x < xd ;

Aþ; x > xd :

�

In general, the solution uðx; tÞ will be discontinuous across the interface, and again its values over the left and
the right sides of the interface, uðx�d ; tÞ and uðxþd ; tÞ, are assumed to be coupled by the given interface jump
condition
Rþuðxþd ; tÞ � R�uðx�d ; tÞ ¼ gðtÞ; ð17Þ

where R+ and R� are two square matrices.

Again, we seek to develop a uniformly second-order finite difference method based on the Lax–Wendroff
approach, which in this case takes the form
unþ1¼: un þ Dtun
t þ
ðDtÞ2

2
un

tt ¼ un � DtAun
x þ
ðDtÞ2

2
A2un

xx: ð18Þ
For each unknown unþ1
i , the above Lax–Wendroff scheme is employed with the spatial derivatives being

approximated by second-order central finite differences like in (4) and (5). At such nodes in the neighborhood
of the interface, say xj and xjþ1, ghost values uG

jþ1 and uG
j are defined and used to calculate unþ1

j and unþ1
jþ1 in the

exactly same fashion as discussed in Section 2 for the case of scalar wave equations.
In general, the coefficient matrix A could have eigenvalues of opposite signs, indicating that waves could

propagate through the interface in opposite directions. In this case, quadratic extrapolations similar to (14)
are then employed to calculate both u� and u+, the solutions at both sides of the interface. In a hyperbolic
problem, however, upwind components of waves should pass through an interface unaffected by downwind
contributions. For the numerical solution to satisfy this upwind property as well as the jump condition
(17), special treatment has to be introduced.

Suppose that the coefficient matrix A can be diagonalized as
A ¼ PKP�1;
where K ¼ diagðk1; k2; . . . ; knÞ in which ki’s are the eigenvalues of the coefficient matrix A. Without loss of gen-
erality, we assume that k1; . . . ; kp > 0, kpþ1; . . . ; kq < 0, and kqþ1; . . . ; kn ¼ 0. Also for a well-defined hyperbolic
problem, A� and A+ are assumed to have the same number of positive eigenvalues as well as the same number
of negative ones. Then, by introducing the characteristic variable w ¼ ðw1;w2; . . . ;wnÞT ¼ P�1u, first we can
reformulate the jump condition (17) as
Qþwþ � Q�w� ¼ g; ð19Þ

where Q� ¼ R�P�, Qþ ¼ RþPþ, and w� ¼ ðP�Þ�1

u� and wþ ¼ ðPþÞ�1
uþ are the approximations of the char-

acteristic variable w at the two sides of the discontinuity, respectively. Then we let
w� ¼
w�1

w�2

w�3

0
B@

1
CA; wþ ¼

wþ1

wþ2

wþ3

0
B@

1
CA
be the partitions of w� and w+ based on the signs of the eigenvalues of the coefficient matrix, i.e.,
w1 ¼ ðw1; . . . ;wpÞT; w2 ¼ ðwpþ1; . . . ;wqÞT; and w3 ¼ ðwqþ1; . . . ;wnÞT, and
Q� ¼
Q�11 Q�12 Q�13

Q�21 Q�22 Q�23

Q�31 Q�32 Q�33

0
B@

1
CA; Qþ ¼

Qþ11 Qþ12 Qþ13

Qþ21 Qþ22 Qþ23

Qþ31 Qþ32 Qþ33

0
B@

1
CA ð20Þ
be the corresponding partitions of the matrices Q� and Q+, respectively.
The above characteristic components w1 and w2 represent, respectively, the characteristic waves propagat-

ing along the positive and the negative x direction. Therefore, by the upwind principle, the w�1 component of
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w� and the wþ2 component of w+ should not be affected by the embedded boundary, but the wþ1 component of
w+ and the w�2 component of w� shall be corrected in an upwind manner. On the other hand, since w3 rep-
resents the non-propagating wave, we can maintain either w�3 or wþ3 while updating characteristic variables
by the jump condition (19). In the case that we choose to maintain w�3 , after rearranging the jump condition
(19), we have
Qþ11 �Q�12 Qþ13

Qþ21 �Q�22 Qþ23

Qþ31 �Q�32 Qþ33

0
B@

1
CA

wþ1

w�2

wþ3

0
B@

1
CA ¼ gþ

Q�11 �Qþ12 Q�13

Q�21 �Qþ22 Q�23

Q�31 �Qþ32 Q�33

0
B@

1
CA

w�1

wþ2

w�3

0
B@

1
CA: ð21Þ
Here, the coefficient matrix on the left side of Eq. (21) will be invertible for well-posed hyperbolic systems.
Once we have the updated characteristic components wþ1 , w�2 , and wþ3 , the two interface solutions are calcu-
lated back by u� ¼ P�w� and uþ ¼ Pþwþ.

Equivalently, to solve Eq. (16), we can rewrite it as a system of decoupled scalar wave equations
owi

ot
þ ki

owi

ox
¼ 0; 0 6 i 6 n; ð22Þ
where the ki’s may have jump discontinuities at the interface. Since each equation in the system (22) is a scalar
wave equation, we can solve it by applying the same strategy as discussed in Section 2 trivially. In the case that
the transformed jump condition (19) is not decoupled, however, the same procedure to preserve upwind char-
acteristic information and correct downwind one should be carried out to make sure that the numerical
approximation satisfies both the upwind property and the jump condition at the interface.

4. Two-dimensional Maxwell’s equations

The methodology discussed in Sections 2 and 3 can also be extended naturally to two-dimensional wave
problems. For simplicity but without loss of generality, let us consider the two-dimensional z-transverse mag-
netic (TM) set of Maxwell’s equations
ou

ot
þ A

ou

ox
þ B

ou

oy
¼ 0; ðx; yÞ 2 X ¼ ½a; b� � ½c; d�; ð23Þ
where u ¼ ðH x;Hy ;EzÞT with Ez and H ¼ ðH x;H yÞT representing the scalar electric field and the vector mag-
netic field, respectively, and
A ¼
0 0 0

0 0 �1=l

0 �1=e 0

0
B@

1
CA; B ¼

0 0 1=l

0 0 0

1=e 0 0

0
B@

1
CA
with e and l representing the material electric permittivity and the material magnetic permeability,
respectively.

In addition, the solution domain X is divided by a dielectric interface C into two disjoint pieces, X� and X+,
representing two distinct dielectric materials. Across the material interface, the tangential components of the
fields should be continuous, yielding the following interface condition
n�Hþ ¼ n�H�; n � lþHþ ¼ n � l�H�; Ez;þ ¼ Ez;�; ð24Þ

which can be rewritten in a form similar to (17), i.e.,
RþuþðC; tÞ � R�u�ðC; tÞ ¼ gðC; tÞ; ð25Þ

with gðC; tÞ � 0 and
R� ¼
�ny nx 0

l�nx l�ny 0

0 0 1

0
B@

1
CA;
where n ¼ ðnx; nyÞT represents a unit vector normal to the interface C.
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To solve Eq. (23) by a finite difference method, the computational domain X is discretized into cells of size
Dx� Dy to form a uniform Cartesian grid fðxi; yjÞ ¼ ðaþ iDx; cþ jDyÞ; 0 6 i 6 N ; 0 6 j 6 M ; Dx ¼
ðb� aÞ=N ; Dy ¼ ðd � cÞ=Mg. In addition, the intersection points between the interface C and the Cartesian
grid coordinate lines are also calculated in order to track the solution at both sides of the interface and thus
capture the interface condition (25).

As in the one-dimensional case, the upwinding boundary condition capturing method will be constructed
again based on the second-order Lax–Wendroff scheme which in the two-dimensional case takes the form
unþ1¼: un þ Dtun
t þ
ðDtÞ2

2
un

tt ¼ un � DtðAun
x þ Bun

yÞ þ
ðDtÞ2

2
A2un

xx þ ðABþ BAÞun
xy þ B2un

yy

� �
: ð26Þ
For each unknown unþ1
ij , the above Lax–Wendroff scheme is used together with the spatial derivatives being

discretized by central finite differences, yielding the following difference scheme (when Dx ¼ Dy)
unþ1
ij ¼ un

ij �
Dt

2Dx
ðAðun

iþ1;j � un
i�1;jÞ þ Bðun

i;jþ1 � un
i;j�1ÞÞ þ

1

2

Dt
Dx

� �2

ðA2ðun
iþ1;j � 2un

ij þ un
i�1;jÞ

þ B2 un
i;jþ1 � 2un

ij þ un
i;j�1

� �
þ 1

4
ðABþ BAÞðun

iþ1;jþ1 � un
iþ1;j�1 � un

i�1;jþ1 þ un
i�1;j�1ÞÞ: ð27Þ
However, this is valid only at regular grid points, where all nine nodes in the stencil lie on the same side of the
interface, and for irregular grid points, local modification of the difference scheme is required for the numerical
approximation to maintain the second-order accuracy and preserve the jump condition across the interface.

To construct the local difference scheme for irregular grid points in one side of the interface, ghost values
are needed for the correlated irregular grid points at the other side of the interface. The definition of the ghost
values, however, becomes more involved for two-dimensional problems. In principle, the calculation of the
ghost values for the discretization of spatial derivatives ux, uxx, uy, and uyy could be performed in a dimension
by dimension fashion, but this implies that two possibly different ghost values are used at the same ghost node,
one value for the numerical discretization in the x direction and the other for that in the y direction. For the
numerical discretization of uxy, we then have more than one ghost values to choose for those ði� 1; j� 1Þ
nodes in the nine point stencil. For example, as shown in Fig. 2, for the numerical discretization of uxy at
the irregular point D, we need a ghost value at the irregular point C that can emulate the behavior of the solu-
tion in the subdomain X+. But if we calculate ghost values in a dimension by dimension fashion, there will be
two ghost values defined at the node C, one obtained by the linear extrapolation of uB and uþII, and the other
obtained by the linear extrapolation of uE and uþIII.

Another potential problem is that, for an arbitrary interface and an arbitrary grid, the construction of
extrapolants (to define ghost values and calculate interface solutions) in the dimension by dimension fashion
may not always be possible for some irregular points due to the limited number of neighboring grid points in a
specific direction within the same side of the interface. For instance, as shown in Fig. 2, if the interface point II
is not too close from the irregular grid point B, we can construct a linear extrapolant of uB and uþII to define the
corresponding ghost value at the point C in the y direction. When the interface point II is too close to the grid
point B, however, as we pointed out in Section 2, we should shift the extrapolation to be centered one grid
point to the bottom, i.e., we should use uA and uþII instead. Unfortunately, the point A is on the other side
of the interface and therefore cannot be used here. Although for this particular case, one may argue that
we may be able to use uþI and uþII to construct a linear extrapolant in the y direction, it will make programming
much more complicated.

Generally speaking, when the interface C is flat, there shall be enough grid points for us to construct linear
extrapolants to calculate ghost values and interface solutions. For most curved interfaces, however, the dimen-
sion by dimension linear extrapolation may not be applicable. For those cases, we propose to use the same
least square approach as discussed in [13], using available solutions in one side of the interface, to define a
unique ghost value for each irregular point in the other side of the interface. Like in the one-dimensional case,
numerical solutions at the interface are also used in the extrapolation for capturing the interface jump condi-
tion. Some other general methodology for extrapolating a function from a region where it is known to a region
where it is unknown can be found in [31], which is more applicable to moving interface problems though.



Ω+

Ω–

Γ

A

B

C

D

E

I

II

III

o

o

o

o

o

o

Fig. 2. Illustration of a two-dimensional mesh with an embedded interface C.
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Once the solutions at all grid points have been calculated, they are used to calculate interface solutions at all
interface points by a very similar least square approach. However, like the one-dimensional case, for the
numerical solutions to satisfy the interface jump condition (25) and the upwind property, special treatment
has to be introduced after the two interface solutions at a particular interface point are obtained by the least
square approach.

More precisely, let us consider an interface point xd 2 C with the unit normal vector of the embedded
boundary at this point being n ¼ ðnx; nyÞ. At this point, the system (23) can be projected along the normal
direction, yielding the following reformulated linear system
ou

ot
þ An

ou

on
þ Bs

ou

os
¼ 0; ð28Þ
where s ¼ ð�ny ; nxÞ is the unit tangential vector, and An ¼ nxAþ nyB; Bs ¼ nxB� nyA:
To use the upwind condition, we need to use the normal and tangential components of the fields with

respect to the embedded boundary. Note that the matrix An has three real eigenvalues c, �c and 0, where
c ¼ 1=ð�lÞ1=2 is the speed of light in the media, and is thus diagonalizable, i.e.,
An ¼ P n

c

�c

0

0
B@

1
CAP�1

n :
Now, let u�;nþ1
d and uþ;nþ1

d be the two interface solutions obtained by a least square approach at xd. Similar in
Section 3, we exploit the characteristic variables corresponding to the normal direction, i.e., w ¼ P�1

n u. Then in
terms of the characteristic variables, the jump condition (25) can be rewritten as
Qþwþ � Q�w� ¼ g; ð29Þ

where Q� ¼ R�P�n , Qþ ¼ RþPþn , and w� and w+ are the approximations of the characteristic variable at xd, i.e.,
w� ¼
w�1
w�2
w�3

0
B@

1
CA ¼ ðP�n Þ�1

u�;nþ1
d ; wþ ¼

wþ1
wþ2
wþ3

0
B@

1
CA ¼ ðPþn Þ�1

uþ;nþ1
d :
Note that the characteristic variables w1 and w2 represent, respectively, the characteristic waves propagating
along n and �n, and w3 represents the non-propagating wave. Therefore, by the upwind principle, w�1 and wþ2
should not be affected by the embedded boundary since they are upwind incoming with respect to the bound-
ary, while wþ1 and w�2 will be affected by the embedded boundary. The non-propagating wave w�3 need not be
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corrected across the boundary. Therefore, by letting Q� and Q+ be partitioned in a similar way as in (20)
based on the signs of the eigenvalues, then wþ1 and w�2 can be solved similarly as in (21). Once we have the
updated characteristic variables wþ1 and w�2 , the two interface solutions are finally calculated by
u�;nþ1

d ¼ P�n w� and uþ;nþ1
d ¼ Pþn wþ.

As a summary, in the upwinding boundary condition capturing method for Maxwell’s equations with gen-
eral material interfaces, the typical procedures for updating the fields from the time step n to the time step
nþ 1 consist of the following steps.

(1) Using the solutions at the time step n in the region X±, including the interface solutions at the ± side of
the interface, calculate ghost values for all irregular points of the region X«, un;G

ij , by extrapolation con-
structed by a least square approach.

(2) For each regular point (xi,yj), apply the standard second-order Lax–Wendroff scheme (27) to find unþ1
ij .

(3) For each irregular point (xi,yj), use the modified Lax–Wendroff scheme (27) with applicable node values
being replaced by corresponding ghost values to calculate unþ1

ij .
(4) Using the grid solutions at the time step nþ 1 in the region X±, calculate the interface solutions at the ±

side of the interface, u�;nþ1
d , by extrapolation constructed by a least square approach.

(5) At each interface point xd, correct u�;nþ1
d such that they satisfy the interface jump condition as well as the

upwind property.

5. Local truncation error and GKS stability analysis

One natural concern with the upwinding boundary condition capturing method is its local truncation error.
For the one-dimensional wave Eq. (1), it is well known that the local truncation error for the standard Lax–
Wendroff method
unþ1
i ¼ kðkþ 1Þ

2
un

i�1 þ ð1� k2Þun
i þ

kðk� 1Þ
2

un
iþ1; ð30Þ
where k ¼ cDt=Dx, is
T n
i ¼ �

1

6
cðDxÞ2ð1� k2Þuxxxðxi; tnÞ þOðDt3Þ:
Therefore, at a regular grid point, the upwinding boundary condition capturing method has an OðDx2Þ local
truncation error.

To compute the local truncation error at the irregular point xj, we recall that the solution at this point is
given by
unþ1
j ¼ kðkþ 1Þ

2
un

j�1 þ ð1� k2Þun
j þ

kðk� 1Þ
2

un;G
jþ1; ð31Þ
where un;G
jþ1 is defined by either (8) or (9). As pointed out in Section 2, we use (9) since h could be very close to

zero in practice. Substituting un;G
jþ1 defined in (9) into Eq. (31), we have
unþ1
j ¼ kðkþ 1Þ

2
un

j�1 þ ð1� k2Þun
j þ

kðk� 1Þ
2

h� 1

1þ h
un

j�1 þ
2

1þ h
u�;n

� �
: ð32Þ
Note that the scheme (32) reduces to the standard Lax–Wendroff scheme when h ¼ 1. (When h ¼ 0, it reduces
to the upwind method.) Then, it is easy to obtain the local truncation error at xj
T n
j ¼

1

2
ð1� hÞc�Dxð1� kÞuxxðxj; tnÞ þOðDt2Þ:
Similarly, to compute the local truncation error at the irregular point xjþ1, we recall that the solution at this
point is given by
unþ1
jþ1 ¼

kðkþ 1Þ
2

un;G
j þ ð1� k2Þun

jþ1 þ
kðk� 1Þ

2
un

jþ2; ð33Þ
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where un;G
j is defined by either (12) or (13). As pointed out in Section 2, we use (13) since h could be very close

to one in practice. Substituting un;G
j defined in (13) into Eq. (33), we have
unþ1
jþ1 ¼

kðkþ 1Þ
2

�h
2� h

un
jþ2 þ

2

2� h
uþ;n

� �
þ ð1� k2Þun

jþ1 þ
kðk� 1Þ

2
un

jþ2: ð34Þ
Note that the scheme (34) reduces to the standard Lax–Wendroff scheme when h ¼ 0. (When h ¼ 1, it reduces
to the downwind method but it is not used in the proposed scheme.) Then, it is easy to obtain the local trun-
cation error at xjþ1
T n
jþ1 ¼ �

1

2
hcþDxð1þ kÞuxxðxjþ1; tnÞ þOðDt2Þ:
Remark 1. It has been theoretically shown and numerically demonstrated that, when a certain order finite
difference method is used to approximate mixed initial boundary value problems, the use of a local one-order-
lower scheme at a finite number of grid points will not affect the global accuracy of the scheme [4,10,23,32,33].
It is for this reason that we use the linear extrapolations (9) and (13) to define ghost values. As confirmed by
numerical experiments in Section 6, the overall second-order convergence rate of the proposed scheme is
maintained.

Another natural concern with the upwinding boundary condition capturing method is the stability of the
scheme, which is always a critical issue with hyperbolic problems having discontinuous coefficients, and is con-
siderably more complex than for homogeneous cases. For one-dimensional problems it might be possible to
analyze this, like that Kreiss et al. did for one-dimensional second-order wave equations with various types of
boundary conditions [27–30]. For two-dimensional systems with general curved interfaces, however, there
seems to be little hope of proving stability rigorously because of the extensive use of one-sided stencils and
one-sided extrapolations in combination with a variable position and shape of the interface.

Next we will analyze the stability of the scheme in the region X+ using the GKS theory [34–36] for the
model wave equation (1) with c > 0 and xd 6 x <1. Recall that the solution uþ;nþ1 is provided through
the jump condition (15), the solution unþ1

jþ1 at the point xjþ1 is given by (34), and the solution unþ1
i for

i > jþ 1 is obtained by the standard Lax–Wendroff scheme (30).
For GKS stability analysis, we consider a homogeneous boundary condition at xd by setting uþ;n ¼ 0 in

(34). Then we have
unþ1
jþ1 ¼ ð1� k2Þun

jþ1 þ
kðkþ 1Þ

2

�h
2� h

þ kðk� 1Þ
2

� �
un

jþ2: ð35Þ
We then need to show that the scheme (30) and (35) does not have any nontrivial admissible solution of the
following form
un
i ¼ AðzÞznji; jzjP 1; jjj 6 1: ð36Þ
For the scheme (30) and (35), we have the following system:
z ¼ ð1� k2Þ þ kðkþ 1Þ
2

�h
2� h

þ kðk� 1Þ
2

� �
j;

z ¼ kðkþ 1Þ
2

j�1 þ ð1� k2Þ þ kðk� 1Þ
2

j:

ð37Þ
Then it is clear that when h ¼ 0, no solution of any form exists. On the other hand, when 0 < h < 1, it can be
seen that
j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2� h

h

r

which is greater than 1 in magnitude. Therefore, the system (37) has no admissible solution of the form (36),
which proves the GKS stability of the scheme (30) and (35).
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6. Numerical examples

To test the second-order accuracy and the stability of the proposed scheme and compare the proposed
scheme with the UEBM and the second-order immersed interface method (IIM) [16], several wave systems
with available exact solutions, taken from [13], are simulated in this section. As our focus is on the capability
of the proposed scheme to handle various types of material interfaces, in all of our numerical examples, the
exact solutions are imposed as initial conditions as well as Dirichlet boundary conditions at the boundaries of
the computational domains so that we can measure the errors in the numerical solutions and thus investigate
the convergence property of the scheme. In practical simulations when exact boundary values are not avail-
able, absorbing boundary conditions such as Perfectly Matched Layer (PML) boundary conditions [37–39]
should be used. Also, unless otherwise specified, the exact solutions are utilized in defining jump conditions
of the type ½u� ¼ uþ � u� across the material interfaces.

6.1. Linear one-dimensional wave systems

We begin by considering the one-dimensional wave system (16) in the domain X ¼ ½0; 1�, with the different
formulas of the coefficient matrix across the discontinuity xd 2 ð0; 1Þ being
Table
Grid r

N

100
200
400
800

1600
A� ¼
0 1

1 0

� �
and Aþ ¼

0 3

3 0

� �
;

respectively. Given appropriate initial and boundary conditions, an analytical solution u ¼ ðu1; u2ÞT to this
system is
u1ðx; tÞ ¼
1
2
ðsinðkðxþ tÞÞ þ sinðkðx� tÞÞÞ; 0 6 x < xd ;

1
2
ðsinðkðxþ 3tÞÞ þ sinðkðx� 3tÞÞÞ; xd < x 6 1;

(

and
u2ðx; tÞ ¼
� 1

2
ðsinðkðxþ tÞÞ � sinðkðx� tÞÞÞ; 0 6 x < xd ;

� 1
2
ðsinðkðxþ 3tÞÞ � sinðkðx� 3tÞÞÞ; xd < x 6 1:

(

We shall test four different cases with the discontinuity xd at 0:5þ Dx=108; 0:5þ Dx=4; 0:5þ Dx=2, and
0:5� Dx=108, corresponding to four different cell fractions h ¼ 10�8; 1=4; 1=2, and 1� 10�8, respectively.
For all four cases, we set the wave number as k ¼ 8p and the time step size as
Dt ¼ CFL� Dx
jkmaxj

; ð38Þ
where jkmaxj ¼ maxfjkA� j; jkAþ jg and CFL ¼ 0:8 in our tests. Table 1 shows the error analysis results for all
four cases, where kEk denotes the relative error in the numerical solution measured in L1 norm over all grid
points at the time t ¼ 100 (corresponding to a propagation over a distance of 1200 wavelengths). First, the
second-order accuracy of the scheme is clearly observed for all cases. Second, the numerical results also dem-
onstrate the stability of the scheme with the same time step size independent of the interface location. Third,
1
efinement analysis for the one-dimensional wave system

h ¼ 10�8 h ¼ 1=4 h ¼ 1=2 h ¼ 1� 10�8

iEi Order iEi Order iEi Order iEi Order

1.07E�1 9.72E�2 9.00E�2 9.42E�2
2.30E�2 2.22 2.25E�2 2.11 2.21E�2 2.03 2.29E�2 2.04
5.51E�3 2.06 5.45E�3 2.04 5.46E�3 2.02 5.63E�3 2.02
1.35E�3 2.02 1.35E�3 2.02 1.36E�3 2.01 1.40E�3 2.01
3.37E�4 2.01 3.35E�4 2.01 3.39E�4 2.00 3.49E�4 2.00
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by comparing the numerical results obtained by the proposed scheme to those obtained by the UEBM and the
IIM for the same wave system [13], we have found that all three methods have comparable degree of accuracy,
which could be partially understood by the fact that all three methods employ the second-order Lax–Wendroff
scheme for regular grid points. For instance, if we compare Table 1 to Tables 1–3 in [13], we can see that, in
the magnitude of the errors, the proposed approach is slightly better than the UEBM for most cases, in par-
ticular, when N > 100, but slightly worse than the IIM. However, the implementation of the proposed scheme
is more straightforward, especially for multi-dimensional interface problems. Fig. 3 shows the exact and the
numerical solutions at the time t ¼ 100:55 for the case of xd ¼ 0:5þ Dx=2, where the mesh with N ¼ 200 is
used to calculate the numerical solution. As is indicated, the proposed scheme can correctly capture the inter-
face jump conditions.

6.2. One-dimensional Maxwell’s equations

As stated earlier, the standard second-order Yee scheme [1] has been widely used in computational electro-
magnetics. To compare the proposed method with the standard Yee scheme, we shall consider the one-dimen-
sional Maxwell’s equations
–

–

–

–

u 1(x
,1

00
.5

5)

Fig. 3.
where
�
oE
ot
¼ oH

oz
; l

oH
ot
¼ oE

oz
;

in the domain X ¼ ½�0:5; 0:5� or X ¼ ½�0:5; 0:51�, where Eðz; tÞ and Hðz; tÞ signify the mutually perpendicular
tangential electric and magnetic field components Ey and Hx, respectively.

We take the simple example of a plane wave normally incident on a planar boundary (z ¼ 0). On the left of
the boundary ðz 6 0Þ, the medium is vacuum (�1 ¼ 1; l1 ¼ 1), but on the right ð0 6 zÞ, the medium is a dielec-
tric with �2 ¼ 2 and l2 ¼ 2. When the incident wave encounters the interface between the vacuum and the
dielectric, a reflective wave and a transmitted wave will be generated, respectively. To solve the wave propa-
gation problem, the above one-dimensional Maxwell’s equations are employed. In our test, the incident plane
wave takes the form
Einc ¼ eiðxtþk1zÞ; H inc ¼
1

Z1

eiðxtþk1zÞ;
where k1 ¼ xð�1l1Þ
1=2 and Z1 ¼ ðl1=�1Þ1=2 are the propagation constant and the impedance of the vacuum,

respectively. An analytical solution to this problem is given in [13,40].
We first solve the above one-dimensional Maxwell’s equations in the domain X ¼ ½�0:5; 0:5� by the Yee

scheme and the proposed scheme with CFL ¼ 0:8. Note that the computational domain for this case is
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The exact and the numerical solutions of the one-dimensional wave system at the time t ¼ 100:55 for the case of xd ¼ 0:5þ Dx=2,
the mesh with N ¼ 200 is used to calculate the numerical solution. (a) u1ðx; 100:55Þ. (b) u2ðx; 100:55Þ.



Table 2
Grid refinement analysis for the one-dimensional Maxwell’s equations with X ¼ ½�0:5; 0:5�
N The Yee scheme The proposed scheme

iEi Order iEi Order

100 2.41E�1 1.46E�2
200 6.12E�2 1.98 3.65E�3 2.00
400 1.53E�2 2.00 9.11E�4 2.00
800 3.83E�3 2.00 2.28E�4 2.00

1600 9.59E�4 2.00 5.70E�5 2.00
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symmetric about the interface. So for the chosen grid sizes, the interface is always on a grid point, i.e.,
h ¼ 0 for the proposed scheme. For the Yee scheme, we thus always place the dielectric interface on a mag-
netic node for the chosen grid sizes, and the permeability l at this magnetic node is simply taken as the
arithmetic average of l1 and l2. Table 2 shows the results of grid refinement analysis for both schemes,
where the relative error iEi is measured at the time t ¼ 100, clearly indicating the expected second-order
convergence rate for both the Yee scheme and the proposed scheme. In addition, for this problem the
UEBM seems to be a little better than the proposed approach in the magnitude of the errors as shown
in Table 2 in this paper and Table 5 in [13].

We then solve the above one-dimensional Maxwell’s equations in a slightly different domain
X ¼ ½�0:5; 0:51� by the Yee scheme and the proposed scheme with the same CFL number. Note that the com-
putational domain for this case is not symmetric about the interface. So for the chosen grid sizes, the interface
is not necessarily on a grid point, and for the proposed scheme, the cell fraction h varies between around 0.01
and 0.51. For the Yee scheme, the same code as in the case of X ¼ ½�0:5; 0:5� is used, but now we can no longer
guarantee the interface to be placed on an either magnetic or electric node for the chosen grid sizes. The rel-
ative errors iEi measured at the same time t ¼ 100 are displayed in Table 3.

As shown in Table 3, the numerical solution obtained by the proposed scheme maintains the second-order
convergence rate, but that obtained by the standard Yee scheme seems to be only first-order accurate at best,
even though for this case the solution is continuous across the interface. Furthermore, the convergence rate of
the Yee scheme tends to decrease as the grid size increases, which could be partially understood by the possible
localized non-convergent behavior of the scheme, as reported by many authors [3,4]. Another point that can
be appreciated from the numerical results is that, to have numerical solutions of a realistic accuracy around
1%, the grid size N needed by the Yee scheme is about a factor of 4 larger than that needed by the proposed
scheme. Therefore, in terms of the grid size, the proposed scheme is practically more efficient than the standard
Yee scheme for modeling dielectric interfaces.

6.3. Linear two-dimensional wave systems

To verify the second-order accuracy of the proposed scheme for two-dimensional applications, we start by
considering a two-dimensional wave system (23) with the two coefficient matrices in the domain X� being
Table
Grid r

N

100
200
400
800

1600
A� ¼
2 �1

�1 2

� �
; B� ¼

2 0

0 1

� �
;

3
efinement analysis for the one-dimensional Maxwell’s equations with X ¼ ½�0:5; 0:51�

The Yee scheme The proposed scheme

iEi Order iEi Order h

5.50E�2 1.53E�2 0.5050
3.00E�2 0.88 3.83E�3 2.00 0.0099
1.34E�2 1.16 9.46E�4 2.02 0.0198
7.69E�3 0.81 2.35E�4 2.01 0.0396
5.30E�3 0.54 5.84E�5 2.01 0.0792
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and in the domain X+ being
Table
Grid r

Grid

100�
200�
400�
800�
Aþ ¼
4 �2

�2 4

� �
; Bþ ¼

4 0

0 2

� �
;

respectively. Given appropriate initial and boundary conditions, an analytical solution to this system is
u1ðx; y; tÞ ¼
sinðkðx� tÞÞ þ sinðkðy � 2tÞÞ; ðx; yÞ 2 X�;

sinðkðx� 2tÞÞ þ cosðkðy � 4tÞÞ; ðx; yÞ 2 Xþ;

�

and
u2ðx; y; tÞ ¼
sinðkðx� tÞÞ þ sinðkðy � tÞÞ; ðx; yÞ 2 X�;

sinðkðx� 2tÞÞ þ cosðkðy � 2tÞÞ; ðx; yÞ 2 Xþ:

�

For the purpose of testing the capability of the proposed scheme in handling different types of material inter-
faces, we shall solve the above two-dimensional wave system in the square domain X ¼ ½�1; 1� � ½�1; 1� with
several types of interfaces. For all cases, however, the wave number is set as k ¼ 2p and the time step size as
Dt ¼ CFL� h

2
ffiffiffi
2
p
jkmaxj

; ð39Þ
where jkmaxj ¼ maxfjkA� j; jkAþ j; jkB� j; jkBþ jg, h ¼ Dx ¼ Dy, and in our tests CFL = 0.8, independent of the loca-
tion and the shape of the interface.

We first consider the case in which the interface C is a straight line represented by the equation y ¼ xþ hC,
where 0 < hC < Dx signifies the distance between the interface C and the grid points. A small hC implies that
the interface is close to the grid points from above, and on the other hand, a large hC indicates that the inter-
face is close to the grid points from below. X� and X+ are the regions described by y > xþ hC and y < xþ hC,
respectively. Note that in this case, ghost values are also required for some boundary points in the bottom-left
and the upper-right corners of the square. In Table 4, we list the errors in the numerical solution measured at
the time t ¼ 100 and the corresponding error analysis results for three different situations with hC being chosen
as 10�8Dx, Dx/2, and (1–10�8)Dx, respectively. Again, a uniformly second-order convergence is observed in all
three situations. Also, by comparing Table 4 in this paper to Table 6 in [13], we can see that the proposed
approach clearly outperforms the UEBM with around twice the accuracy. Fig. 4 shows the numerical solution
of u1ðx; y; tÞ at the time t ¼ 100 for the case of hC ¼ 10�8Dx with a 200� 200 grid. As can be seen, the
numerical solution properly captures the interface jump condition.

We then consider the two-dimensional wave system with a non-ideal circular interface C defined by
x2 þ y2 ¼ ð1þ Dr sin L/Þ20:62, where Dr represents a variation of the radius of the non-ideal circular interface,
L the number of the deviation maxima, and / the polar angle of the point ðx; yÞ. Here, the interface is a super-
position of random Gaussian deviation from an ideal circular interface of radius R ¼ 0:6 with a maximal
amplitude Dr and a characteristic distance between the deviation maxima Dl � 2pR=L. X� and X+ are the
regions outside and inside the circular interface, respectively. Note that in this case, depending on the location
of an interface point, the two eigenvalues of the matrix An ¼ nxAþ nyB could be both positive, both negative,
or one positive and one negative. The errors in the numerical solution measured at the time t ¼ 100 are shown
in Table 5, which again confirms the second-order convergence rate of the proposed scheme. Moreover, by
comparing Table 5 in this paper to Table 8 in [13], we can see once again that the proposed approach clearly
4
efinement analysis for the two-dimensional wave system with the straight line interface: y ¼ xþ hC

hC ¼ 10�8Dx hC ¼ Dx=2 hC ¼ ð1� 10�8ÞDx

iEi Order iEi Order iEi Order

100 4.30E�2 4.36E�2 4.93E�2
200 1.08E�2 1.99 1.08E�2 2.02 1.09E�2 2.18
400 2.71E�3 1.99 2.70E�3 2.00 2.74E�3 2.00
800 6.78E�4 2.00 6.77E�4 2.00 6.77E�4 2.01
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Fig. 4. The exact and the numerical solutions u1ðx; y; tÞ of the two-dimensional wave system at the time t ¼ 100 for the case of the straight
line interface y ¼ xþ 10�8Dx, where a 200� 200 grid is used to calculate the numerical solution. (a) The contour of the numerical solution.
(b) The y ¼ 0:5 cross-sections of the numerical and the exact solutions.

Table 5
Grid refinement analysis for the two-dimensional wave system with the non-ideal circular interface: x2 þ y2 ¼ ð1þ Dr sin L/Þ20:62

Grid Dr ¼ 0:0 L ¼ 10; Dr ¼ 0:05 L ¼ 20; Dr ¼ 0:025

iEi Order iEi Order iEi Order

100� 100 3.73E�2 3.74E�2 3.46E�2
200� 200 6.31E�3 2.56 6.60E�3 2.50 6.48E�3 2.42
400� 400 1.57E�3 2.01 1.54E�3 2.10 1.56E�3 2.05
800� 800 3.94E�4 2.00 3.91E�4 1.98 3.95E�4 1.99
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Fig. 5. The exact and the numerical solutions u1ðx; y; tÞ of the two-dimensional wave system at the time t ¼ 100 for the case of the non-
ideal circular interface x2 þ y2 ¼ ð1þ 0:025 sin 20/Þ20:62, where a 200� 200 grid is used to calculate the numerical solution. (a) The
contour of the numerical solution. (b) The y ¼ 0:5 cross-sections of the numerical and the exact solutions.
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outperforms the UEBM with around twice the accuracy. The contour as well as the y ¼ 0:5 cross-section of
the numerical solution of u1ðx; y; tÞ at the same time are plotted in Fig. 5, which again demonstrates the capa-
bility of the proposed scheme in capturing discontinuity of the solution at the interfaces.

We next consider the same two-dimensional wave system with a multiple bubble interface C that consists of
four circles defined by ðxþ 0:5Þ2 þ y2 ¼ 0:32; ðx� 0:6Þ2 þ y2 ¼ 0:252; x2 þ ðy þ 0:6Þ2 ¼ 0:252 and x2þ
ðy � 0:6Þ2 ¼ 0:252, respectively. And for this example, we let the region outside the four circles be X+ and
the region enclosed by the four circles be X�. The errors in the numerical solution measured at the time
t ¼ 100 are shown in Table 6, and the contour as well as the y ¼ 0:5 cross-section of the numerical solution
of u1ðx; y; tÞ at the same time is plotted in Fig. 6, which again demonstrate the scheme’s second-order conver-
gence and its capability in capturing discontinuity of the solution at the interface.

To examine the long time stability of our approach, we record and display in Fig. 7 the corresponding
errors of the numerical solution as a function of time over the time period ½0; 100� for various grid sizes for
both the straight line interface and the non-ideal circular interface (A total of 848,520 time steps are carried
out for the 800� 800 grid). Note that there is no noticeable growth of the error after running the problem for
100 time units, indicating the scheme will remain stable and second-order accurate for long time
computations.

6.4. Scattering by single dielectric cylinder

In this example, we shall consider a typical electromagnetic scattering problem as illustrated in Fig. 8, i.e.,
scattering of a plane incident wave by a dielectric circular cylinder. Maxwell’s equations (23), together with the
boundary condition (24), can be used to solve the problem.
Table 6
Grid refinement analysis for the two-dimensional wave system with the multiple bubble interface

Grid iEi Order Time steps

200 · 200 9.26E�3 212,130
400 · 400 2.32E�3 2.00 424,260
800 · 800 5.86E�4 1.99 848,520
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We assume that the cylinder is illuminated by a time-harmonic incident plane wave of the form
Ez
inc ¼ e�iðk1x�xtÞ; H y

inc ¼ �e�iðk1x�xtÞ;
where k1 ¼ xðl1�1Þ1=2 is the propagation constant for homogeneous, isotropic free space medium. Then there
is an analytical solution of this problem due to Mie, which can be found in [41] and is also available in [13].

We would like to verify the second-order convergence of the proposed scheme for solving the above prac-
tical scattering problem. To this end, the analytical solution of the problem is imposed as the initial condition
as well as the Dirichlet boundary condition at the artificial boundary of the computational domain. Also, in
our simulations we let the cylinder radius R be 0.5 and the angular frequency X of the incident wave be 2p. The
computational domain is the square X ¼ ½�1; 1� � ½�1; 1�, and the time step size is always imposed as
Dt ¼ CFL� h

2
ffiffiffi
2
p

kmax

;

where kmax ¼ maxfc1; c2g and ck ¼ 1=ðeklkÞ
1=2, for k ¼ 1; 2, and CFL ¼ 0:8 in our tests. Please note that

kmax ¼ 1 in our case since the material exterior to the cylinder is assumed to be vacuum (e1 ¼ 1 and l1 ¼ 1).
We first consider a situation in which e2 ¼ 2 but l2 ¼ 1, i.e., the material is non-magnetics. Fig. 9 shows the

contour and the x ¼ 0:2 cross-section of the computed field component Hx at the time t ¼ 10 when using a
200� 200 mesh. Please note that Hx is continuous but its derivative is discontinuous across the material inter-
face. Actually, in this case, it is clear from the interface condition (24) that all three field components are con-
tinuous across the material interface. The derivative of the Ez component is also continuous across the
interface, but the derivatives of the Hx and Hy components are discontinuous.
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We then consider a case in which e2 ¼ 2 and l2 ¼ 2. Fig. 10 shows the contour and the y ¼ 0:2 cross-section
of the computed field component Hx at the time t ¼ 10 when using a 200� 200 mesh. Please note that in this
case, both Hx and its derivative are discontinuous across the material interface. Actually, it is clear again from
the interface condition (24) that in this case only the field component Ez is continuous, and the field compo-
nents Hx and Hy and the derivatives of all three field components are discontinuous across the material
interface.

Table 7 shows the error analysis results for both cases, where iEi denotes the relative error in the numerical
solution measured in L1 norm over all grid points at the time t ¼ 10. Studying the error as a function of the
grid size, first the global second-order accuracy is clearly observed for both cases. Also note that the accuracy
for the first case is better than that for the second case, which is because the wave length inside the cylinder for
e material parameters e
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Table 7
Grid refinement analysis for solving the scattering problem by the proposed scheme ðe1 ¼ 1; e2 ¼ 2; l1 ¼ 1; l2 ¼ 1 or 2Þ
Grid l2 ¼ 1 l2 ¼ 2

iEi Order iEi Order

100 · 100 4.87E�2 1.83E�1
200 · 200 1.28E�2 1.92 4.07E�2 2.17
400 · 400 3.29E�3 1.96 9.67E�3 2.07
800 · 800 8.22E�4 2.00 2.44E�3 1.98

Table 8
Grid refinement analysis for solving the scattering problem by the standard Yee scheme ðe1 ¼ 1; e2 ¼ 2; l1 ¼ 1; l2 ¼ 1 or 2Þ
Grid l2 ¼ 1 l2 ¼ 2

iEi Order iEi Order

100 · 100 2.65E�2 8.31E�2
200 · 200 1.26E�2 1.07 1.05E�1
400 · 400 6.26E�3 1.01 1.17E�1
800 · 800 3.32E�3 0.91 1.18E�1
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the second case is a factor of
ffiffiffi
2
p

smaller than that for the first case and thus a smaller grid size shall be needed
to resolve the solution to the same degree of accuracy.

As our final numerical example, we would like to investigate the efficiency of the proposed method by com-
paring it against the standard Yee scheme in solving the same scattering problems. The errors in the numerical
solutions for the Yee scheme are displayed in Table 8. As indicated, for the case that l2 ¼ 1 (the solutions are
continuous), the Yee scheme converges, but the global accuracy of the Yee scheme is reduced to first-order
because it cannot model the interface correctly. On the other hand, for the case that l2 ¼ 2 (the solutions
are discontinuous), the standard Yee scheme once again exhibits the non-convergent behavior.

7. Conclusions

In this paper, with the use of ghost points, we have proposed a second-order upwinding boundary condi-
tion capturing method for solving time-domain Maxwell’s equations in media with material interfaces. The
proposed scheme retains the simplicity of Cartesian grid based methods while providing the uniformly sec-
ond-order accuracy across the material interfaces at a time step size allowed on the uniform Cartesian mesh.
Extensive numerical tests confirm the stability and the global second-order accuracy and ease of implementa-
tion of the method. In addition, although the proposed scheme in general has comparable degree of accuracy
with previous embedded boundary methods including the second-order UEBM and the second-order IIM, the
proposed approach outperforms the UEBM for most cases, in particular, when used to solve two-dimensional
wave systems.
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